"The Hase Cemparay"

Pac king Dimensions for Key LDH

Size	Type	Standard length (ft)	Hose Length per $\mathrm{cu} . \mathrm{ft}$ (ft)	Volume Occupied per hose length (ft^{3})	Volume Occupied per 1 ft hose (ft 3)	Approximate Capacity of 58.6 cu . ft Hose Bed (ft)*	Layflat Hose Width (in.)	Weight per Coupled Hose length (lbs)
4	Pro-Flow	100	41	2.44	0.024	2400	6.25	84
5	Pro-Flow	100	25.7	3.89	0.039	1500	7.88	105
4	ECO-10	100	41	2.44	0.024	2400	6.75	84
5	ECO-10	100	25.7	3.89	0.039	1500	8.25	105

*Theoretical capacity based on a hose bed $51 / 2$ feet wide $\times 8$ feet long and 16 inches high. Since the manner in which the hose is "folded and packed" into the hose bed can give different results, the above figures are considered to be easily attainable without requining excessive effort.

For determining the amount of hose that will pack into other sized areas, use the following procedure

1. Determine the volume in ft^{3} of the container to be used.
2. To determine the volume you must convert the conta iners dimensions to linear dimensions, i.e. . height, width and depth
3. Multiply height x width x depth (all in inches) to determine total cubic inches.
4. Divide total cubic inches by 1728 to determine the area in cubic feet.
5. Multiply cubic footage by coresponding number in "hose per cubic foot" column.
